Telephone Cables | ||||||||||||
|
Solid PE Insulated &LAP Sheathed (ALPETH) Air Core Cables to ICEA S-85-625
Application
The cables are designed for use as subscriber distribution cables and as connection between central offices. The
cables are suitable for installation in ducts, direct burial in the ground and also for aerial installation with integral
suspension strand. An armoured option is offered for direct burial installations. A figure-8 self support option is
offered for aerial installation.
Standards
• ANSI/ICEA S-85-625
Construction
Conductors
Solid annealed bare copper, 0.4/0.5/0.63/0.9mm, as per ASTM B-3/class 1 of IEC 60228
Insulation
Solid medium or high density polyethylene as per ASTM D 1248/IEC 60708
TwistedPairs
Insulated conductors are twisted into pairs with varying lay length to minimize crosstalk
CablingElement
Twisted Pairs
Cable Core Assembly
Cables of 25 pairs or less are assembled into cylindrical core. Cables larger than 25 pairs are assembled into units,
which are then used to form the core. Units are identified by colour coded binders
Core Wrapping
One or more non-hygroscopic polyester tapes are helically or longitudinally laid with an overlap. These tapes
furnish thermal, mechanical as well as high dielectric protection between shielding and individual conductors
Moisture Barrier
Moisture Barrier: A layer of aluminium tape (0.2mm) coated with PE-copolymer is applied longitudinally with overlap
over the cable core to provide 100% electrical shielding coverage and ensure a barrier against water vapor.
Sheath
Black low or medium density polyethylene as per ASTM D 1248/IEC 60708, being able to withstand exposure to
sunlight, temperature variations, ground chemicals and other environmental contaminants
Ripcord
Ripcord may be provided for slitting the sheath longitudinally to facilitate its removal
SparePairs (optional)
Spare pairs may be provided for large pair cables
Continuity Wire (optional)
One tinned copper drain wire may be longitudinally laid to ensure electrical continuity of the screen
Optional Construction
Armoured Cable
0.15mm thick corrugated steel tape armour is applied with an overlap over an optional inner polyethylene sheath.
An outer polyethylene sheath is applied over the armour
Self-Support Cables
A 7-strand galvanized steel strand is used as support wire. Black polyethylene sheath covers both
core and
support wire in a figure-8 construction
Shield Options
There are 8 different shield options which can be offered in this standard:1) 8 mil bare aluminium tape
2) 8 mil coated aluminium tape
3) 5 mil copper tape
4) 5 mil copper clad alloy steel tape
5) 5 mil copper clad stainless steel tape
6) 6 mil & 7 mil 194 copper alloy tape
7) 6 mil bare steel tape
8) 6 mil coated steel tape
Aabbreviations
LAP (CAP): Bare Aluminium tape + PE sheath
LAPSP (CAPSP): LAP sheath + steel tape armour + PE
LAP (ALPETH): PE sheath
PAP: PE inner sheath + bare aluminium tape + PE sheath
PASP: PE inner sheath + bare aluminium tape + steel tape a rmour + PE outer sheath
ASP(STAPETH): Bare aluminium tape + PE inner sheath + steel tape armour + PE outer sheath
CACSP: Copolymer coated aluminum tape + copolymer coated steel tape armour + PE outer sheath
LAPSP: Copolymer coated aluminum tape + PE inner sheath + steel tape armour + PE outer sheath
FIGURE 8 LAP: Copolymer coated aluminum tape + PE outer sheath + self supporting
Electrical Properties
Nominal Conductor Diameter | mm | 0.4 | 0.5 | 0.63 | 0.9 |
---|---|---|---|---|---|
Conductor Gauge Size | AWG | 26 | 24 | 22 | 19 |
Maximum Average DC Resistance | Ω/km / Ω/mile | 140/225 | 87/140 | 55/88.6 | 27.0/43.4 |
Maximum Individual DC Resistance | Ω/km / Ω/mile | 144.2/232 | 89.5/144 | 56.5/91.0 | 28.0/45.0 |
Minimum Insulation Resistance @500V DC | MΩ.km / MΩ.mile | 1600/1000 | 1600/1000 | 1600/1000 | 1600/1000 |
Maximum Average Resistance Unbalance | % | 1.5 | 1.5 | 1.5 | 1.5 |
Maximum Individual Resistance Unbalance | % | 5 | 5 | 5 | 5 |
Average Mutual Capacitance | nF/km / nF/kft | 48.5-54.0 /14.8-16.5 |
48.5-54.0 /14.8-16.5 |
48.5-54.0 /14.8-16.5 |
48.5-54.0 /14.8-16.5 |
Maximum Individual Mutual Capacitance | nF/km / nF/kft | 57/17.4 | 57/17.4 | 57/17.4 | 57/17.4 |
Maximum Individual Capacitance Unbalance pair-to-pair | pF/km / pF/kft | 145/44 | 145/44 | 145/44 | 145/44 |
Capacitance Unbalance RMS pair-to-pair | pF/km / pF/kft | 45/13.7 | 45/13.7 | 45/13.7 | 45/13.7 |
Maximum Individual Capacitance Unbalance pair-to-ground | pF/km / pF/kft | 2625/800 | 2625/800 | 2625/800 | 2625/800 |
Maximum Average Capacitance Unbalance pair-to-ground | pF/km / pF/kft | 574/175 | 574/175 | 574/175 | 574/175 |
Maximum Conductor Loop Resistance @20°C | Ω/km / Ω/mile | 300/482 | 192/309 | 114/183.6 | 60/96.4 |
Impedance @1KHz | Ω | 994 | 796 | 660 | 445 |
Impedance @100KHz | Ω | 147 | 134 | 125 | 122 |
Impedance @512KHz | Ω | 120 | 118 | 117 | 116 |
Impedance @1MHz | Ω | 117 | 115 | 114 | 113 |
Maximum Average Attenuation @0.8KHz | dB/km / dB/kft | 1.64/0.5 | 1.30/0.39 | 1.04/0.32 | 0.74/0.22 |
Maximum Average Attenuation @1KHz | dB/km / dB/kft | 1.68/0.51 | 1.35/0.41 | 1.08/0.33 | 0.76/0.23 |
Maximum Average Attenuation @3KHz | dB/km / dB/kft | 3.18/0.97 | 2.52/0.77 | 2.01/0.61 | 1.42/0.43 |
Maximum Average Attenuation @150KHz | dB/km / dB/kft | 11.4/3.47 | 8.3/2.53 | 6.2/1.89 | 4.4/1.34 |
Maximum Average Attenuation @772KHz | dB/km / dB/kft | 24.3/7.4 | 19.4/5.9 | 15.4/4.7 | 10.8/3.3 |
Maximum Average Attenuation @1000KHz | dB/km / dB/kft | 27.1/8.25 | 21.4/6.52 | 17.5/5.33 | 12.8/3.89 |
Dielectric Strength | |||||
Conductor to Conductor (3secs) | V DC | 2400 | 3000 | 4000 | 5000 |
Conductor to Screen (3secs) | V DC | 10000 | 10000 | 10000 | 10000 |
Minimum EL Far-end Cross-talk-Mean Power Sum | |||||
@150KHz | dB/305m / dB/kft | 61 | 63 | 63 | 65 |
@772KHz | dB/305m / dB/kft | 47 | 49 | 49 | 57 |
@1.6MHz | dB/305m / dB/kft | 41 | 42 | 43 | 44 |
@3.15MHz | dB/305m / dB/kft | 35 | 37 | 37 | 39 |
@6.3MHz | dB/305m / dB/kft | 29 | 31 | 31 | 33 |
Minimum Far-end Cross-talk-Worst Pair Power Sum | |||||
@150KHz | dB/305m / dB/kft | 57 | 57 | 57 | 59 |
@772KHz | dB/305m / dB/kft | 43 | 43 | 43 | 45 |
@1.6MHz | dB/305m / dB/kft | 37 | 37 | 37 | 39 |
@3.15MHz | dB/305m / dB/kft | 31 | 31 | 31 | 33 |
@6.3MHz | dB/305m / dB/kft | 25 | 25 | 25 | 27 |
Minimum Near-end Cross-talk-Mean Power Sum | |||||
@150KHz | dB/305m / dB/kft | 58 | 58 | 58 | 58 |
@772KHz | dB/305m / dB/kft | 47 | 47 | 47 | 47 |
@1.6MHz | dB/305m / dB/kft | 43 | 43 | 43 | 43 |
@3.15MHz | dB/305m / dB/kft | 38 | 38 | 38 | 38 |
@6.3MHz | dB/305m / dB/kft | 34 | 34 | 34 | 34 |
Minimum Near-end Cross-talk-Worst Pair Power Sum | |||||
@150KHz | dB/305m / dB/kft | 53 | 53 | 53 | 53 |
@772KHz | dB/305m / dB/kft | 42 | 42 | 42 | 42 |
@1.6MHz | dB/305m / dB/kft | 38 | 38 | 38 | 38 |
@3.15MHz | dB/305m / dB/kft | 33 | 33 | 33 | 33 |
@6.3MHz | dB/305m / dB/kft | 29 | 29 | 29 | 29 |
Nominal Insulation Thickness | mm | 0.15 | 0.2 | 0.26 | 0.3 |
Nominal Insulated Conductor Diameter | mm | 0.7 | 0.9 | 1.15 | 1.5 |